Learning From our Mistakes – Prospects for a Discipline of Software Forensics

Paul Bailes1,2

with

Christine Cornish1,2, Toby Myers1,2, Lou Rago2, Nick Tate3 and Mal Thatcher4

1School of ITEE, The University of Queensland, QLD 4072 Australia
2BCI Technology, Level 2, 167 Eagle St, Brisbane, QLD 4000 Australia
3RDSI Project, The University of Queensland, QLD 4072 Australia
4Mater Health Services, Raymond Tce, South Brisbane, QLD 4101 Australia
The Message

If aeronautical engineering can be developed and matured "from scratch" within a century, there is no excuse for accepting the excuse of immaturity for scandalous outcomes of software development and procurement.
Overview

- Software Development Catastrophes
- Chaos not Order
- Aeronautical Engineering Lessons
- Towards SEFA
- Challenges
- Conclusions
Software Development Catastrophes

- USAF ERP - US$1B(illion)
 - [http://www.cio.com/article/721628/Air_Force_scraps_massive_ERP_project_after_racki ng_up_1_billion_in_costs](http://www.cio.com/article/721628/Air_Force_scraps_massive_ERP_project_after_racking_up_1_billion_in_costs)
- UK welfare - UK £300M(illion)
- Queensland (Aus) Health payroll AU$1.2535B(illion)
- UK NHS - UK £12B(illion)
- Obamacare
- Charette’s (2005) Hall of Shame – 9-figure losses unexceptional
- More recently ...
Chaos not Order

- Requirements: nat.lang. vs logic vs graphics
- Specification: model-based vs abstract; logic vs graphical; executable vs non.
- Design: TP vs OO vs ...
- Implementation: C++ vs Java vs Scala vs ...
- V&V: formal methods vs testing
- Overall: waterfall vs V vs agile
V vs agile

V
• Requirements
 – System Design
 • Architecture Design
 – Module Design
 » Coding
 – Unit Test
 • Integration Test
 – System Test
• Acceptance Test

Agile
• requirements refined from iterative coding
Aeronautical Engineering Failures

• very well-documented
 – http://en.wikipedia.org/wiki/Aviation_accidents_and_incidents

• ICAO Treaty (annex 13, since 1951) mandates investigative standards including national investigative bodies e.g.
 – http://www(aaib.gov.uk/home/index.cfm
Stress distribution at 56.9 kPa cabin pressure and 1.3 g inertia loading.
Where the crew of TE901 thought they were flying — along the computer track used by the previous sightseeing flights.

Where TE901 was actually flying — following the changed computer track. It looped down to 1500ft through a gap in the clouds.
Aeronautical Engineering Lessons

• Evidence-based
 – fatigue
 – whirl mode → flutter
 – engine attachments

• Beyond technical
 – maintenance procedures
 – integrity of navigation parameters
 – ICAO treaty

• List the findings and causes established in the investigation. The list of causes should include both the immediate and the deeper systemic causes.
Towards SEFA

• Knowledge
 – basic SE
 – legals
 – research (general and specific)

• Modes
 – preventive
 – corrective
 – investigative

• Structure
 – private “Software Forensics Institute”
 – AAIB/ATSB/NTSB
Challenges

• apprehend narrative record of specific projects
• assess against specific SE processes & techniques
• assess artefacts also
• what is the philosophical basis for making inferences
 – how do you really know if A caused B
Conclusions

SEFA raises hopes for the following:

• an evidence-based, more specific understanding of the different circumstances under which different software processes and tools are more or less appropriate;
• similarly for other variations from canonical process(es);
• meta-level tools and techniques to enable the above;
• more specific directions in software engineering education and training;
• incidentally, because software systems dominate aeronautical engineering, a formally-established “Software Forensics Institute” would discharge implicit ICAO obligations in software dimension of air accident investigations.
Some specific tech. issues

• “black boxes” for software developers
• integrated standards as bases e.g.
 – OGC Gateway
 – ISO standards (12207 & 15288)
• a rubric when “agile” methods are appropriate (or not)!
• meta-level considerations e.g.
 – recording of forensic investigators’ implicit assumptions
 = “black boxes” for software forensic investigators
Aims:

• to advance the theory and practice of software engineering through the analysis of software development projects by distinguishing between the characteristics of successful versus failed or failing projects;
• simultaneously, to develop tools and techniques to facilitate these analyses;
• equally, to foster the development of social institutions and practices (both voluntarily and by regulation/legislation, as appropriate) that will encourage the adoption and application of the above;
• thereby engendering improvements in the timeliness, cost and effectiveness of significant software procurement exercises;
• and thus, to achieve the economic and social benefits resulting from all the foregoing.